célula
vegetal
Una célula
vegetal es un tipo de célula eucariota de la que se componen muchos tejidos
en las plantas.
A menudo, es descrita con los rasgos de una célula del parénquima
asimilador de una planta vascular. Pero sus características no
pueden generalizarse al resto de las células de una planta, meristemáticas
o adultas, y menos aún a las de los muy diversos organismos imprecisamente
llamados vegetales.
Las células
adultas de las plantas terrestres presentan rasgos comunes, convergentes con las de otros organismos sésiles,
fijos al sustrato, o pasivos, propios del plancton,
de alimentación osmótrofa, por absorción, como es el caso de los hongos, pseudohongos
y de muchas algas. Esos rasgos comunes se han desarrollado independientemente a
partir de protistas
unicelulares fagótrofos desnudos (sin pared celular). Todos los eucariontes
osmótrofos tienden a basar su solidez, sobre todo cuando alcanzan la
pluricelularidad, en la turgencia, que logran gracias al desarrollo de paredes
celulares resistentes a la tensión, en combinación con la presión osmótica del
protoplasma, la célula viva. Así, las paredes celulares son comunes a los hongos y protistas de modo
de vida equivalente, que se alimentan por absorción
osmótica de sustancias orgánicas, y a las plantas y algas, que toman
disueltas del medio sales minerales y realizan la fotosíntesis.
Y también cabe agregar que no tienen centriolos
en su interior, ya que estos solo se presentan en las células animales.
Pared celular
Se
distinguen una pared primaria y una secundaria, que se desarrollan en forma
propagada a las microfibrillas de celulosa
dispuestas de manera ordenada, con una estructura más densa que la pared
primaria. No permite el crecimiento de la célula; solamente aumenta su espesor
por aposición,
es decir, por depósito de microfibrillas de celulosa. Generalmente presenta
tres capas, aunque pueden ser más.
Cuando
existe pared celular secundaria, el contenido celular desaparece, quedando en
su lugar un hueco denominado lúmen celular. Por eso, todas las células
con pared secundaria son células muertas.
Cloroplastos
Los
cloroplastos están compuesto por el hialoplasma o citosol,
disolución acuosa de moléculas orgánicas e iones, y los orgánulos
citoplasmáticos, como los plastos, mitocondrias, ribosomas, aparato de
Golgi. Las membranas del retículo endoplásmico son relativamente
escasas y están enmascaradas por los numerosos ribosomas que llenan el citosol.
El gran desarrollo del retículo endoplásmico durante la diferenciación celular
se relaciona con la intensa hidratación que experimenta el cloroplasto. Este
proceso da lugar a enormes vacuolas que se llenan de líquido que se suelen unir
entre sí, como pared celular.
Plasmodesmo
Se llama plasmodesmo a cada una de las unidades continuas de citoplasma que pueden atravesar las paredes celulares, manteniendo interconectadas las células continuas en organismos pluricelulares en los que existe pared celular, como las plantas o los hongos. Permiten la circulación directa de las sustancias del citoplasma entre célula y célula comunicándolas, atravesando las dos paredes adyacentes a través de perforaciones acopladas, que se denominan punteaduras cuando sólo hay pared primaria. Cada plasmodesmo es recorrido a lo largo de su eje por un desmotúbulo, una estructura cilíndrica especializada del retículo endoplasmático. Al hallarse unidos entre sí los protoplastos de las células vivas por medio de plasmodesmos, constituyen un simplasto único. El movimiento de sustancias a través de los plasmodesmos se denomina transporte simplástico. Las paredes celulares, los lúmenes de las células muertas y los espacios intercelulares que rodean al simplasto formando también un continuo, se contraponen bajo el nombre de apoplasto; el movimiento de sustancias en él se conoce como transporte apoplástico.Los plasmodesmos se forman en células vegetales que se originan a partir de la división de una misma célula madre. Cuando ha ocurrido la cariocinesis, la célula vegetal madre se ha convertido en una célula con dos núcleos hijos, se produce a continuación la citocinesis, que toma una forma distinta en células vegetales que en las células desnudas, sin pared, de los animales. Durante la división de la célula vegetal se pone en marcha la formación de pared entre los dos núcleos, en el plano ecuatorial de la célula, dentro de vesículas procedentes del aparato de Golgi. Esta pared no se completa, sino que conserva las perforaciones a través de las cuales se mantiene la continuidad del citoplasma en forma de plasmodesmos.
Vacuola
Una vacuola es un orgánulo celular presente en todas las células de plantas y hongos. También aparece en algunas células protistas y de otras eucariotas. Las vacuolas son compartimentos cerrados o limitados por la membrana plasmática ya que contienen diferentes fluidos, como agua o enzimas, aunque en algunos casos puede contener sólidos. La mayoría de las vacuolas se forman por la fusión de múltiples vesículas membranosas. El orgánulo no posee una forma definida, su estructura varía según las necesidades de la célula en particular.Las vacuolas que se encuentran en las células vegetales son regiones rodeadas de una membrana (tonoplasto o membrana vacuolar) y llenas de un líquido muy particular llamado jugo celular.
La célula vegetal inmadura contiene una gran cantidad de vacuolas pequeñas que aumentan de tamaño y se van fusionando en una sola y grande, a medida en que la célula va creciendo. En la célula madura, el 90 % de su volumen puede estar ocupado por una vacuola, con el citoplasma reducido a una capa muy estrecha apretada contra la pared celular.
Origen de las vacuolas vegetales
Desde hace
mucho tiempo se ha considerado que las vacuolas se forman del retículo endoplasmático. Cuando se
evidenció que eran muy parecidas a los lisosomas
de las células animales se llegó a la conclusión, de que las vacuolas de por lo
menos algunas células vegetales tenían un origen similar al de los lisosomas
animales.
La formación
de los lisosomas está asociado a una región del citoplasma muy especializada
llamada GERL, formado por el complejo de
Golgi, el retículo endoplasmático y los lisosomas. Esta asociación
de membranas se ha encontrado también en algunas células vegetales, por lo que
el origen de las vacuolas podría ser el mismo que el de los lisosomas animales.
Contenido vacuolar
En el
interior de las vacuolas, en el jugo celular, se encuentran una gran cantidad
de sustancias. La principal de ellas es el agua, junto a otros componentes que
varían según el tipo de planta en la que se encuentren. Además de agua, las
vacuolas contienen típicamente sales y azúcares,
y algunas proteínas
en disolución.
Debido al
transporte activo y retención de ciertos iones por parte del
tonoplasto, los iones se pueden acumular en el líquido vacuolar en
concentraciones muy superiores a las del citoplasma exterior. A veces la
concentración de un determinado material es suficientemente grande como para
formar cristales, por ejemplo, de oxalato de
calcio, que pueden adoptar distintas formas: drusa, con forma de estrellas, y rafidios,
con forma de agujas. Algunas vacuolas son ácidas, como por ejemplo la de los cítricos.
La vacuola,
es a menudo un lugar de concentración de pigmentos.
Los colores azul, violeta, púrpura, rojo de las células vegetales se deben,
usualmente, a un grupo de pigmentos llamados antocianinas
(responsables de las coloraciones de frutas y verduras).
Funciones
Gracias al
contenido vacuolar y al tamaño, la célula, el consumo de nitrógeno del
citoplasma, consigue una gran superficie de contacto entre la fina capa del
citoplasma y su entorno. El incremento del tamaño de la vacuola da como
resultado también el incremento de la célula. Una consecuencia de esta
estrategia es el desarrollo de una presión de turgencia, que permite mantener a
la célula hidratada, y el mantenimiento de la rigidez del tejido, unas de las
principales funciones de las vacuolas y cloroplasto.
Otras de las
funciones es la de la desintegración de macromoléculas y el reciclaje de sus
componentes dentro de la célula. Todos los orgánulos celulares, ribosomas,
mitocondrias
y plastidios
pueden ser depositados y degradados en las vacuolas. Debido a su gran actividad
digestiva, son comparadas a los orgánulos de las células animales denominados
lisosomas.
También
aíslan del resto del citoplasma productos secundarios tóxicos del metabolismo,
como la nicotina (un alcaloide).
Existen
otras estructuras que se llaman también vacuolas pero cuya función es muy
diferente:
- Vacuolas pulsátiles: éstas extraen el agua del citoplasma y la expulsan al exterior por transporte activo.
- Vacuolas digestivas: se produce la digestión de sustancias nutritivas, una vez digeridas pasan al interior de la célula y los productos de desecho son eliminados hacia el exterior de la célula.
- Vacuolas alimenticias: función nutritiva, forma a partir de la membrana celular y del retículo endoplasmático.
Plasto
Los plastos, plástidos o plastidios son orgánulos celulares eucarióticos, propios de las plantas y algas. Su función principal es la producción y almacenamiento de importantes compuestos químicos usados por la célula. Así, juegan un papel importante en procesos como la fotosíntesis, la síntesis de lípidos y aminoácidos, determinando el color de frutas y flores, entre otras funciones.1Hay dos tipos de plastos claramente diferenciados, según la estructura de sus membranas: los plastos primarios, que se encuentran en la mayoría de las plantas y algas; y plastos secundarios, más complejos, que se encuentran en el plancton
Características
Los plastos primarios son propios de una rama evolutiva que incluye a las algas rojas, las algas verdes y las plantas. Existen plastos secundarios que han sido adquiridos por endosimbiosis por otras estirpes evolutivas y que son formas modificadas de células eucarióticas plastidiadas.Los plastos de las plantas se presentan como orgánulos relativamente grandes, de forma elipsoidal, y generalmente numerosos. En un milímetro cuadrado de sección de una hoja, pueden existir más de 500.000 cloroplastos. En protistas son a menudo estructuras singulares, que se extienden más o menos extensamente por el citoplasma. Se encuentran limitados del resto del citoplasma por dos membranas estructuralmente distintas. A menudo están coloreados por pigmentos de carácter liposoluble. Al igual que las mitocondrias, poseen ADN circular y desnudo. Los plastos de los diversos grupos eucarióticos son notablemente dispares. Los que aparecen en las plantas ofrecen una referencia adecuada.
Aparecen delimitados por la envoltura plastidial, formada por dos membranas, la membrana plastidial externa y la membrana plastidial interna. El espacio entre ambas, llamado espacio intraplastidial, tiene una composición diferenciada y es homólogo del espacio periplasmático de las bacterias.
El espacio interior del cloroplasto, el estroma, contiene vesículas aplastadas llamadas tilacoides, cuyo lumen o cavidad interior se continúa a veces con el espacio periplastidial, sobre todo en los cloroplastos juveniles (proplastidios). Los tilacoides, que se extienden más o menos paralelos, forman localmente apilamientos llamados grana (plural neutro latino de granum). De las membranas de los tilacoides forman parte los fotosistemas, complejos de proteínas y pigmentos, responsables de la fase lumínica de la fotosíntesis.
Los procesos de la fase oscura de la fotosíntesis, con la fijación del carbono (ciclo de Calvin) ocurren en disolución en el estroma, aprovechando la energía fijada como ATP en los tilacoides durante la fase lumínica.
En el estroma reside el ADN plastidial, una versión reducida del cromosoma bacteriano del que procede portador de un catálogo limitado de genes. Como es común en bacterias, el plasto verde presenta su ADN en forma de un único cromosoma circular. La información genética del cromosoma plastidial dirige la formación de un número limitado de proteínas, el resto son importadas del citoplasma. Para la síntesis proteica el plasto cuenta con sus propios ribosomas que son, lógicamente, del tipo procariótico (bacteriano). Los plastos se multiplican por bipartición, una vez duplicado el ADN plastidial.
En las células de las plantas los cloroplastos se desplazan y se orientan cada vez de la forma más adecuada para la captación de la luz.
Tipos de plastidios
- Cloroplastos (generalmente en las células de plantas y algas). Realizan la fotosíntesis. Los cloroplastos son los orgánulos celulares que en los organismos eucariontes fotosintetizadores se ocupan de la fotosíntesis. Están limitados por una envoltura formada por dos membranas concéntricas y contienen vesículas, los tilacoides, donde se encuentran organizados los pigmentos y demás moléculas que convierten la energía lumínica en energía química.
- Cromoplastos (sólo en las células de plantas y algas). Sintetizan y almacenan pigmentos. Su presencia en las plantas determina el color rojo, anaranjado o amarillo de algunas frutas, hortalizas y flores. El color de los cromoplastos se debe a la presencia de ciertos pigmentos; como los carotenos, de color rojo y las xantofilas, de color amarillo. Por ejemplo, el tomate y las zanahoria contienen muchos pigmentos carotinoides.
- Leucoplastos: Estos plastos son incoloros y se localizan en las células vegetales de órganos no expuestos a la luz, tales como raíces, tubérculos, semillas y órganos que almacenan almidón.
Desarrollo y Reproducción
Los plastos se multiplican por bipartición. Los protoplastos crecen junto con las células meristemáticas. En su desarrollo, mediante invaginaciones de la membrana interna, los plastos adquieren una gran superficie. En esta superficie interna, los pigmentos fotosintetizadores se sitúan de forma ordenada. En la oscuridad los protoplastos de los vegetales se pueden transformar en estructuras cristalinas llamadas etioplastos, que por el efecto de la luz, pueden a su vez transformarse en plastos fotosintéticamente activos. Los plastos que están dañados o que son seniles presentan a menudo en su interior gotas de lípidos, conocidas con el nombre de plastoglóbulos.En la reproducción sexual de los organismos, los plastidios se transmiten mediante los gametos, en muchos casos a través del gameto femenino. El ADN de los plastos es específico y se denomina ADN plastidial, y se diferencia del ADN nuclear por la relación entre las bases y grosor. el ADN plastidial es un filamento doble y circular que se replica por una ADN-plastidial-polimerasa específica. y también existe una ARN-plastidial-polimerasa específica para la transcripción. Una parte de las proteínas del plasto se sintetiza a partir del ADN-plastidial de 40 nm de longitud, y otra parte del ADN nuclear. Los genes de los plastos forman el plastoma, mientras que el conjunto de plastos de una célula se llama plastidoma. Los ribosomas de los plastos son más pequeños que los del citoplasma, con una velocidad de sedimentación de 70 s. Estos ribosomas plastidiales son parecidos a los de los procariotas. En las bacterias fotosintéticas y en las cianoficeas los pigmentos fotosintéticos no se sitúan en orgánulos especiales, sino en cromatoplastoplastos, cuya estructura es parecida a los tilacoides de los plastos de las células eucarióticas.
Origen
Se cree que el origen evolutivo de los plastos se encuentra asociado a una endosimbiosis entre una cianobacteria próxima a géneros actuales como Synechococcus o Nostoc, con un protista heterótrofo flagelado del que derivan las algas verdes, los glaucocistófitos y las algas rojas. Distinguimos dos tipos de plastos por su origen:- Plastos primarios. Derivan directamente de la simbiosis de una cianobacteria dentro de un flagelado unicelular. De éste último deriva los grupos que portan plastos primarios: las algas rojas, las algas verdes y las plantas terrestres, que evolucionaron a partir de algas verdes de agua dulce. La versión más “primitiva” de este orgánulo puede verse todavía en las cianelas de los glaucocistófitos, algas unicelulares en cuyo plasto se conservan restos de la pared celular de las bacterias.
- Plastos secundarios. Se trata de que algas eucarióticas unicelulares han sido asimiladas, en un proceso de endosimbiosis secundaria, por otro eucarionte. Este caso se ha repetido muchas veces en la evolución y el resultado es la inmensa diversidad de los plastos de las algas. El simbionte ha sido algunas veces un alga verde (p.ej. en Chlorarachniophyta), pero son más frecuentes los derivados de un alga roja. En algunos casos se conserva reconocible el núcleo eucariótico del simbionte, al que se llama nucleomorfo. Estos plastos de origen secundario suelen tener envolturas complejas con tres o más membranas, alguna derivada de la membrana plasmática del alga roja, y a veces con un recubrimiento de retículo endoplasmático. Los plastos de las algas pardas, las diatomeas y otros grupos relacionados (Chromophyta) se originaron de esta manera.
Son orgánulos característicos de las células eucarióticas vegetales. Sus tamaños pueden variar, están envueltos por una doble membrana que a la vez lo delimita y tienen ribosomas semejantes a los de los procariotas.
Se forman a partir de proplastos, que son los plástidos de células jóvenes.
Se caracterizan por tener microgotas de lípidos y por poseer material genético propio.
Clasificación
Los plastos pueden clasificarse según su ubicación, en proplástidos, amiloplastos y cromoplastos.- Los proplástidos contienen gránulos de almidón y en células de las hojas jóvenes, dan lugar a cloroplastos.
- Los amiloplastos se encuentran en tejidos vegetales de almacenamiento y están repletos de gránulos de almidón. Se los relaciona con el crecimiento orientado de las raíces.
- Los cromoplastos contiene pigmentos amarillos, anaranjados y rojos llamados carotenoides. Son los responsables del color de las flores y frutos y se desarrollan a partir de cloroplastos cuya clorofila se ha degradado a carotenoides.
Incoloros o leucoplastos
Son vacuolas limitadas por dos membranas (dos unidades de membrana). Su función es el almacenamiento de sustancias de reserva:- almidón, en amiloplastos
- aceites (lípidos), en oleoplastos o elaioplastos.
- proteínas, en proteoplastos o troteínoplastos.
Cromoplastos
Son vacuolas limitadas por dos membranas (dos unidades de membranas) que contienen diversos tipos de pigmentos. Los cromoplastos pueden ser:- Fotosintéticamente activo
·
Cloroplastos (pigmento clorofila, principal
flores, frutos y otras partes del vegetal. No presentan actividad metabólica y
su función parece estar ligada a la polinización y a la dispersión de frutos.
Cloroplasto
Los cloroplastos son los orgánulos celulares que en los organismos eucariontes fotosintetizadores se ocupan de la fotosíntesis. Están limitados por una envoltura formada por dos membranas concéntricas y contienen vesículas, los tilacoides, donde se encuentran organizados los pigmentos y demás moléculas que convierten la energía lumínica en energía química, como la clorofila.El término cloroplastos sirve alternativamente para designar a cualquier plasto dedicado a la fotosíntesis, o específicamente a los plastos verdes propios de las algas verdes y las plantas.
Estructura
El cloroplasto está rodeado de dos membranas, que poseen una diversa estructura continua que delimita completamente el cloroplasto. Ambas se separan por un espacio intermembranoso llamado a veces indebidamente espacio periplastidial. La membrana externa es muy permeable gracias a la presencia de porinas, pero en menor medida que la membrana interna, que contiene proteínas específicas para el transporte.La cavidad interna llamada estroma, en la que se llevan a cabo reacciones de fijación de CO2, contiene ADN circular, ribosomas (de tipo 70S, como los bacterianos), gránulos de almidón, lípidos y otras sustancias.
También, hay una serie de sáculos delimitados por una membrana llamados tilacoides, que en los cloroplastos de las plantas terrestres se organizan en apilamientos llamados grana (plural de granum, grano). Las membranas de los tilacoides contienen sustancias como los pigmentos fotosintéticos (clorofila, carotenoides, xantófilas) y distintos lípidos; proteínas de la cadena de transporte de electrones fotosintética y enzimas, como la ATP-sintetasa.
Al observar la estructura del cloroplasto y compararlo con el de la mitocondria, se nota que ésta tiene dos sistemas de membrana, delimitando un compartimento interno (matriz) y otro externo, el espacio perimitocondrial; por su parte, el cloroplasto tiene tres, que forman tres compartimentos, el espacio intermembrana, el estroma y el espacio intratilacoidal
Funciones
El
cloroplasto es el orgánulo donde se realiza la fotosíntesis
de los organismos eucariotas autótrofos. El conjunto de reacciones de la
fotosíntesis es realizada gracias a todo un complejo de moléculas presentes en
el cloroplasto, una en particular, presente en la membrana de los tilacoides,
es la responsable de tomar la energía del Sol, es llamada clorofila
a.
Existen dos
fases, que se desarrollan en compartimentos distintos:
- Fase luminosa: Se realiza en la membrana de los tilacoides, donde se halla la cadena de transporte de electrones y la ATP-sintetasa responsables de la conversión de la energía lumínica en energía química (ATP) y de la generación poder reductor (NADPH).
- Fase oscura: Se produce en el estroma, donde se halla el enzima RuBisCO, responsable de la fijación del CO2 mediante el ciclo de Calvin.
Leucoplasto
Los leucoplastos son plastidios que almacenan sustancias incoloras o poco coloreadas. Abundan en órganos de almacenamientos limitados por membrana que se encuentran solamente en las células de las plantas y de las algas. Están rodeados por dos membranas, al igual que las mitocondrias, y tienen un sistema de membranas internas que pueden estar intrincadamente plegadas. Los plástidos maduros son de tres tipos: leucoplastos, cromoplastos y cloroplastos. Los leucoplastos almacenan almidón o, en algunas ocasiones, proteínas o aceites. Los cromoplastos contienen pigmentos y están asociados con los colores naranja y amarillo brillante de frutas, flores y hojas del otoño. Los cloroplastos son los plástidos que contienen clorofila y en los cuales tiene lugar la fotosíntesis. Al igual que otros plástidos, están rodeados por dos membranas; la membrana interna, la tercera membrana de los cloroplastos, forma una serie complicada de compartimientos y superficies de trabajo internos.
En resumen, son organelos rodeados de dos membranasy se clasifican según los pigmentos y sustancias que contengan: Leucoplastos: Sin pigmentos Cloroplastos: Con clorofila Cromoplastos: Contiene pigmentos como los carotenos Amiloplastos: Contienen almidón
Cromoplasto
Los cromoplastos
son un tipo de plastos,
orgánulos
propios de la célula vegetal, que almacenan los pigmentos a
los que se deben los colores, anaranjados o rojos, de flores, raíces o frutos.
Cuando son rojos se denominan rodoplastos. Los cromoplastos que
sintetizan la clorofila
reciben el nombre de cloroplastos.
Las plantas
terrestres no angiospérmicas son básicamente verdes; en las angiospermas
aparece un cambio evolutivo llamativo, la aparición de los cromoplastos, con la
propiedad de almacenar grandes cantidades de pigmentos carotenoides.
Ocurre
normalmente con la maduración de frutos como el tomate y la naranja. La diferenciación de un cromoplasto no es un fenómeno
irreversible, en la parte superior de las raíces de zanahoria,
expuestas a la luz, los cromoplastos pueden diferenciarse en cloroplastos
perdiendo los pigmentos y desarrollando tilacoides.
Hay cuatro
categorías de cromoplastos según su estructura:
- Globulosos: los pigmentos se acumulan en gotas junto con lípidos: Citrus, Tulipa.
- Fibrilares o tubulosos: los pigmentos se asocian con fibrillas proteicas: Rosa, Capsicum annuum.
- Cristalosos: los pigmentos se depositan como cristaloides asociados con las membranas tilacoides: tomate, zanahoria.
- Membranosos: membranas arrolladas helicoidalmente: Narcissus
Aparato de Golgi
El aparato de Golgi es
un orgánulo presente en todas las células eucariotas.
Pertenece al sistema de endomembranas. Está formado
por unos 80 dictiosomas (dependiendo del tipo de célula), y estos dictiosomas
están compuestos por 40 o 60 cisternas (sáculos) aplanadas rodeados de membrana
que se encuentran apilados unos encima de otros, y cuya función es completar la
fabricación de algunas proteínas. Funciona
como una planta empaquetadora, modificando vesículas del retículo
endoplasmático rugoso. El material nuevo de las membranas se forma
en varias cisternas del aparato de Golgi. Dentro de las funciones que posee el
aparato de Golgi se encuentran la glicosilación de proteínas, selección, destinación, glicosilación de lípidos, almacenamiento y distribución de lisosomas, al igual que los peroxisomas,
que son vesículas de secreción de sustancias. La síntesis de polisacáridos de la matriz extracelular.
Debe su nombre a Camillo Golgi, Premio Nobel de
Medicina en 1906 junto a Santiago Ramón y
Cajal.
Estructura del aparato de Golgi
El aparato
de Golgi
se compone en estructuras denominadas sáculos. Éstas se agrupan en número
variable, habitualmente de 4 a 8, formando el dictiosoma.
Presentan conexiones tubulares que permiten el paso de sustancias entre las
cisternas. Los sáculos son aplanados y curvados, con su cara convexa (externa)
orientada hacia el retículo endoplasmático. Normalmente se
observan entre 4 y 8, pero se han llegado a observar hasta 60 dictiosomas.1
Alrededor de la cisterna principal se disponen las vesículas esféricas recién
exocitadas. El aparato de Golgi se puede dividir en tres regiones funcionales:
- Región Cis-Golgi: es la más interna y próxima al retículo. De él recibe las vesículas de transición, que son sáculos con proteínas que han sido sintetizadas en la membrana del retículo endoplasmático rugoso (RER), introducidas dentro de sus cavidades y transportadas por el lumen hasta la parte más externa del retículo. Estas vesículas de transición son el vehículo de dichas proteínas que serán transportadas a la cara externa del aparato de Golgi.
- Región medial: es una zona de transición.
- Región Trans-Golgi: es la que se encuentra más cerca de la membrana plasmática. De hecho, sus membranas, ambas unitarias, tienen una composición similar.
Las
vesículas provenientes del retículo endoplásmico se fusionan con el cis-Golgi,
atravesando todos los dictiosomas hasta el trans-Golgi, donde son empaquetadas
y enviadas al lugar que les corresponda. Cada región contiene diferentes enzimas que
modifican selectivamente las vesículas según donde estén destinadas.2
Sin embargo, aún no se han logrado determinar en detalle todas las funciones y
estructuras del aparato de Golgi.
Funciones generales
La célula
sintetiza un gran número de diversas macromoléculas necesarias para la vida. El
aparato de Golgi se encarga de la modificación, distribución y envío de dichas
macromoléculas en la célula. Modifica proteínas y lípidos (grasas) que han sido
sintetizados previamente tanto en el retículo endoplasmático rugoso como en el
liso y los etiqueta para enviarlos a donde corresponda, fuera o dentro de la
célula. Las principales funciones del aparato de Golgi vienen a ser las
siguientes:
- Modificación de sustancias sintetizadas en el REP: En el aparato de Golgi se transforman las sustancias procedentes del REP. Estas transformaciones pueden ser agregaciones de restos de carbohidratos para conseguir la estructura definitiva o para ser proteolizados y así adquirir su conformación activa. Por ejemplo, en el REP de las células acinosas del páncreas se sintetiza la proinsulina que debido a las transformaciones que sufre en el aparato de Golgi, adquirirá la forma o conformación definitiva de la insulina. Las enzimas que se encuentran en el interior de los dictiosomas son capaces de modificar las macromoléculas mediante glicosilación (adición de carbohidratos) y fosforilación (adición de fosfatos). Para ello, el aparato de Golgi transporta ciertas sustancias como nucleótidos y azúcares al interior del orgánulo desde el citoplasma. Las proteínas también son marcadas con secuencias señal que determinan su destino final, como por ejemplo, la manosa-6-fosfato que se añade a las proteínas destinadas a los lisosomas. Para llevar a cabo el proceso de fosforilación el aparato de Golgi importa moléculas de ATP al interior del lumen,3 donde las kinasas catalizan la reacción. Algunas de las moléculas fosforiladas en el aparato de Golgi son las apolipoproteínas que dan lugar a las conocidas VLDL que se encuentran en el plasma sanguíneo. Parece ser que la fosforilación de estas moléculas es necesaria para favorecer la secreción de las mismas al torrente sanguíneo.4
- Secreción celular: las sustancias atraviesan todos los sáculos del aparato de Golgi y cuando llegan a la cara trans del dictiosoma, en forma de vesículas de secreción, son transportadas a su destino fuera de la célula, atravesando la membrana citoplasmática por exocitosis. Un ejemplo de esto son los proteoglicanos que conforman la matriz extracelular de los animales. El aparato de Golgi es el orgánulo de mayor síntesis de carbohidratos.5 Esto incluye la producción de glicosaminoglicanos (GAGs), largos polisacáridos que son anclados a las proteínas sintetizadas en el RE para dar lugar a los proteoglicanos. De esto se encargarán las enzimas del Golgi por medio de un residuo de xilosa. Otra forma de marcar una proteína puede ser por medio de la sulfatación de una sulfotransferasa, que gana una molécula de azufre de un donador denominado PAPs. Este proceso tiene lugar en los GAGs de los proteoglicanos así como en los núcleos de las proteínas. Este nivel de sulfatación es muy importante para los proteoglicanos etiquetando funciones y dando una carga neta negativa al proteoglicano.5
- Producción de membrana plasmática: los gránulos de secreción cuando se unen a la membrana en la exocitosis pasan a formar parte de esta, aumentando el volumen y la superficie de la célula.
- Formación de los lisosomas primarios.
- Formación del acrosoma de los espermios.
Ribosoma
Los ribosomas son complejos macromoleculares de proteínas y ácido ribonucleico (ARN) que se encuentran en el citoplasma, en las mitocondrias, en el retículo endoplasmatico y en los cloroplastos. Son un complejo molecular encargado de sintetizar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico, debido a su reducido tamaño (29 nm en células procariotas y 32 nm en eucariotas). Bajo el microscopio electrónico se observan como estructuras redondeadas, densas a los electrones. Bajo el microscopio óptico se observa que son los responsables de la basofilia que presentan algunas células. Están en todas las células (excepto en los espermatozoides). Los ribosomas están considerados en muchos textos como orgánulos no membranosos, ya que no existen endomembranas en su estructura,1 aunque otros biólogos no los consideran orgánulos propiamente por esta misma razón.2En células eucariotas, los ribosomas se elaboran en el núcleo pero desempeñan su función de síntesis en el citosol. Están formados por ARN ribosómico (ARNr) y por proteínas. Estructuralmente, tienen siempre dos subunidades: la mayor o grande y la menor o pequeña. En las células, estas macromoléculas aparecen en diferentes estados de disociación. Cuando están completas, pueden estar aisladas o formando grupos (polisomas). Las proteínas sintetizadas por los ribosomas actúan principalmente en el citosol; también pueden aparecer asociados al retículo endoplasmático rugoso o a la membrana nuclear, y las proteínas que sintetizan son sobre todo para la exportación.
Tanto el ARNr como las subunidades de los ribosomas se suelen nombrar por su coeficiente de sedimentación en unidades Svedberg. En las células eucariotas, los ribosomas del citoplasma alcanzan 80 S. En plastos de eucariotas, así como en procariotas, son 70 S. Los ribosomas mitocondriales son de tamaño variado, entre 55 y 70 S.3
Retículo endoplasmático
El retículo endoplasmático es un complejo sistema de membranas dispuestas en forma de sacos aplanados y túbulos que están interconectados entre sí compartiendo el mismo espacio interno. Sus membranas se continúan con las de la envuelta nuclear y se pueden extender hasta las proximidades de la membrana plasmática, llegando a representar más de la mitad de las membranas de una célula. Debido a que los ácidos grasos que las componen suelen ser más cortos, son más delgadas que las demás.1El retículo organiza sus membranas en regiones o dominios que realizan diferentes funciones. Los dos dominios más fáciles de distinguir son el retículo endoplasmático rugoso, con sus membranas formando túbulos más o menos rectos, a veces cisternas aplanadas, y con numerosos ribosomas asociados, y el retículo endoplasmático liso, sin ribosomas asociados y con membranas organizadas formando túbulos muy curvados e irregulares.1
La membrana externa de la envuelta nuclear se puede considerar como parte del retículo endoplasmático puesto que es una continuación física de él y se pueden observar ribosomas asociados a ella realizando la traducción. El retículo endoplasmático rugoso y el liso suelen ocupar espacios celulares diferentes como ocurre en los hepatocitos, en las neuronas y en las células que sintetizan esteroides. Sin embargo, en algunas regiones del retículo no existe una segregación clara entre ambos dominios y se aprecian áreas de membrana con ribosomas mezcladas con otras sin ribosomas. La disposición espacial del retículo endoplasmático en las células animales depende de sus interacciones con los microtúbulos, mientras que en las vegetales son los filamentos de actina los responsables.1
Intervienen en funciones relacionadas con la síntesis proteica, metabolismo de lípidos y algunos esteroides, así como el transporte intracelular. Se encuentra en las células animales y vegetal, pero no en la célula procariota.
Clasificación
El retículo endoplasmático rugoso se encuentra unido a la membrana nuclear externa mientras que el retículo endoplasmático liso es una prolongación del retículo endoplasmático rugoso.Retículo endoplasmático rugoso
Artículo principal: Retículo
endoplasmático rugoso
El retículo
endoplasmático rugoso tiene esa apariencia debido a los numerosos ribosomas adheridos a su membrana mediante unas
proteínas denominadas "riboforinas".
Tiene unos sáculos más redondeados cuyo interior se conoce como "luz del
retículo" o "lumen" donde caen las proteínas sintetizadas en él.
Está muy desarrollado en las células que por su función deben realizar una
activa labor de síntesis, como las células hepáticas o las células del páncreas.También se le conoce como R.E.R.Retículo endoplasmático liso
Artículo principal: Retículo
endoplasmático liso
El retículo endoplasmático
liso no tiene ribosomas y participa en el metabolismo
de lípidos. Tambien se conoce como R.E.L.Funciones
- Biosíntesis proteica: El ARN mensajero proviene de la transcripción del ADN nuclear y es su imagen especular. Al llegar al retículo endoplasmático, se fija a unas estructuras específicas llamadas ribosomas, adheridas al retículo endoplasmático. Allí participa en la síntesis de proteínas, determinando el orden en que se unirán los aminoácidos. información está codificada en forma de tripletes: cada tres bases constituyen un codón que determina un aminoácido. Las reglas de correspondencia entre codones y aminoácidos constituyen el código genético. Los aminoácidos son enviados por el ARN de transferencia, específico para cada uno de ellos, y son trasportados hasta el ARN mensajero, donde se aparean el codón de éste y el anticodón del ARN de transferencia, por complementar de bases, y de ésta forma se sitúan en la posición que les corresponde. Una vez finalizada la síntesis de una proteína, el ARN mensajero queda libre y puede ser leído de nuevo. De hecho, es muy frecuente que antes de que finalice una proteína ya está comenzando otra, con lo cual, una misma molécula de ARN mensajero, está siendo utilizada por varios ribosomas simultanéamente.
- Metabolismo de lípidos: Dado que no tiene ribosomas, en el retículo endoplasmático liso no se sintetizan proteínas. Pero tiene un papel esencial en la síntesis de lípidos de la membrana plasmática, colesterol y derivados de éste, como los ácidos biliares o las hormonas esteroideas.
- Desintoxificación: Es un proceso que se lleva a cabo principalmente en las células del hígado y que consiste en la inactivación de productos tóxicos como drogas, medicamentos o los propios productos del metabolismo celular, por ser liposolubles (hepatocitos).
- Glicosilación: Son reacciones de transferencia de un oligosacárido a las proteínas sintetizadas. Se realiza en la membrana del retículo endoplasmático. De este modo, la proteína sintetizada se transforma en una proteína periférica externa del glucocálix en la reproducción de lisosomas. Estos reticulos endoplasmaticos no contiene ribosomas y participa del metabolismo de lípidos.
Mitocondria
Las mitocondrias son orgánulos celulares encargados de suministrar la
mayor parte de la energía necesaria para
la actividad celular (respiración celular).
Actúan, por lo tanto, como centrales energéticas de
la célula y sintetizan Adenosín Trifosfato ATP a
expensas de los carburantes metabólicos (glucosa, ácidos grasos y aminoácidos). La mitocondria
presenta una membrana
exterior permeable a iones, metabolitos y muchos polipéptidos. Eso es debido a que contiene proteínas que forman poros llamados porinas o VDAC
(canal aniónico dependiente de voltaje), que permiten el paso de moléculas de hasta 10 kDa
de masa y un diámetro aproximado de 2 nm.
Membrana externa
Es una bicapa lipídica exterior permeable a iones, metabolitos y muchos polipéptidos. Eso es debido a que contiene proteínas que forman poros, llamadas porinas o VDAC (de canal aniónico dependiente de voltaje), que permiten el paso de grandes moléculas de hasta 5.000 dalton y un diámetro aproximado de 20 Å. La membrana externa realiza relativamente pocas funciones enzimáticas o de transporte. Contiene entre un 60 y un 70% de proteínas.Membrana interna
La membrana interna contiene más proteínas, carece de poros y es altamente selectiva; contiene muchos complejos enzimáticos y sistemas de transporte transmembrana, que están implicados en la translocación de moléculas. Esta membrana forma invaginaciones o pliegues llamados crestas mitocondriales, que aumentan mucho la superficie para el asentamiento de dichas enzimas. En la mayoría de los eucariontes, las crestas forman tabiques aplanados perpendiculares al eje de la mitocondria, pero en algunos protistas tienen forma tubular o discoidal. En la composición de la membrana interna hay una gran abundancia de proteínas (un 80%), que son además exclusivas de este orgánulo:- La cadena de transporte de electrones, compuesta por cuatro complejos enzimáticos fijos y dos transportadores de electrones móviles:
- Complejo I o NADH deshidrogenasa que contiene flavina mononucleótido (FMN).
- Complejo II o succinato deshidrogenasa; ambos ceden electrones al coenzima Q o ubiquinona.
- Complejo III o citocromo bc1 que cede electrones al citocromo c.
- Complejo IV o citocromo c oxidasa que cede electrones al O2 para producir dos moléculas de agua.
- Un complejo enzimático, el canal de H+ ATP sintasa que cataliza la síntesis de ATP (fosforilación oxidativa).
- Proteínas transportadoras que permiten el paso de iones y moléculas a su través, como ácidos grasos, ácido pirúvico, ADP, ATP, O2 y agua; pueden destacarse:
- Nucleótido de adenina translocasa. Se encarga de transportar a la matriz mitocondrial el ADP citosólico formado durante las reacciones que consumen energía y, paralelamente transloca hacia el citosol el ATP recién sintetizado durante la fosforilación oxidativa.
- Fosfato translocasa. Transloca fosfato citosólico junto con un hidrón a la matriz; el fosfato es esencial para fosforilar el ADP durante la fosforilación oxidativa.
Espacio intermembranoso
Entre ambas membranas queda delimitado un espacio intermembranoso que está compuesto de un líquido similar al hialoplasma; tienen una alta concentración de protones como resultado del bombeo de los mismos por los complejos enzimáticos de la cadena respiratoria. En él se localizan diversas enzimas que intervienen en la transferencia del enlace de alta energía del ATP, como la adenilato kinasa o la creatina quinasa. También se localiza la carnitina, una molécula implicada en el transporte de ácidos grasos desde el citosol hasta la matriz mitocondrial, donde serán oxidados (beta-oxidación).Matriz mitocondrial
La matriz mitocondrial o mitosol contiene menos moléculas que el citosol, aunque contiene iones, metabolitos a oxidar, ADN circular bicatenario muy parecido al de las bacterias, ribosomas tipo 55S (70S en vegetales), llamados mitorribosomas, que realizan la síntesis de algunas proteínas mitocondriales, y contiene ARN mitocondrial; es decir, tienen los orgánulos que tendría una célula procariota de vida libre. En la matriz mitocondrial tienen lugar diversas rutas metabólicas clave para la vida, como el ciclo de Krebs y la beta-oxidación de los ácidos grasos; también se oxidan los aminoácidos y se localizan algunas reacciones de la síntesis de urea y grupos hemo.Función
La principal función de las mitocondrias es la oxidación de metabolitos (ciclo de Krebs, beta-oxidación de ácidos grasos) y la obtención de ATP mediante la fosforilación oxidativa, que es dependiente de la cadena transportadora de electrones; el ATP producido en la mitocondria supone un porcentaje muy alto del ATP sintetizado por la célula. También sirve de almacén de sustancias como iones, agua y algunas partículas como restos de virus y proteínas.Membrana plasmática
La membrana plasmática, membrana celular, membrana citoplasmática o plasmalema, es una bicapa lipídica que delimita todas las células. Es una estructura laminada formada por fosfolípidos, glicolípidos y proteínas que rodea, limita, da forma y contribuye a mantener el equilibrio entre el interior (medio intracelular) y el exterior (medio extracelular) de las células. Regula la entrada y salida de muchas sustancias entre el citoplasma y el medio extracelular. Es similar a las membranas que delimitan los orgánulos de células eucariotas.Está compuesta por dos láminas que sirven de "contenedor" para el citosol y los distintos compartimentos internos de la célula, así como también otorga protección mecánica. Está formada principalmente por fosfolípidos (fosfatidiletanolamina y fosfatidilcolina), colesterol, glúcidos y proteínas (integrales y periféricas).
La principal característica de esta barrera es su permeabilidad selectiva, lo que le permite seleccionar las moléculas que deben entrar y salir de la célula. De esta forma se mantiene estable el medio intracelular, regulando el paso de agua, iones y metabolitos, a la vez que mantiene el potencial electroquímico (haciendo que el medio interno esté cargado negativamente). La membrana plasmática es capaz de recibir señales que permiten el ingreso de partículas a su interior.
Cuando una molécula de gran tamaño atraviesa o es expulsada de la célula y se invagina parte de la membrana plasmática para recubrirlas cuando están en el interior ocurren respectivamente los procesos de endocitosis y exocitosis.
Tiene un grosor aproximado de 7,5 nm y no es visible al microscopio óptico pero sí al microscopio electrónico, donde se pueden observar dos capas oscuras bilaterales y una central más clara. En las células procariotas y en las eucariotas osmótrofas como plantas y hongos, se sitúa bajo otra capa exterior, denominada pared celular.
La membrana celular cumple varias funciones: a) delimita y protege las células; b) es una barrera selectivamente permeable, ya que impide el libre intercambio de materiales de un lado a otro, pero al mismo tiempo proporcionan el medio para comunicar un espacio con otro; c) permite el paso o transporte de solutos de un lado a otro de la célula, pues regula el intercambio de sustancias entre el interior y el exterior de la célula siguiendo un gradiente de concentración; d) poseen receptores químicos que se combinan con moléculas específicas que permiten a la membrana recibir señales y responder de manera específica, por ejemplo, inhibiendo o estimulando actividades internas como el inicio de la división celular, la elaboración de más glucógeno, movimiento celular, liberación de calcio de las reservas internas, etc.
Funciones
- La función principal de la membrana plasmática es mantener el medio interno separado del externo. Esto es posible gracias a la naturaleza aislante en medio acuoso de la bicapa fosfolipídica y a las funciones de transporte que desempeñan las proteínas. La combinación de transporte activo y transporte pasivo hacen de la membrana endoplasmática una barrera selectiva que permite a la célula diferenciarse del medio.
- Permite a la célula dividir en secciones los distintos orgánulos y así proteger las reacciones químicas que ocurren en cada uno.
- Crea una barrera selectivamente permeable en donde solo entran o salen las sustancias estrictamente necesarias.
- Transporta sustancias de un lugar de la membrana a otro, ejemplo, acumulando sustancias en lugares específicos de la célula que le puedan servir para su metabolismo.
- Percibe y reacciona ante estímulos provocados por sustancias externas (ligando).
- Mide las interacciones que ocurren entre células internas y externas.
- Poseen receptores químicos que se combinan con moléculas específicas que permiten a la membrana recibir señales y responder de manera específica, por ejemplo, inhibiendo o estimulando actividades internas como el inicio de la división celular, la elaboración de más glucógeno, movimiento celular, liberación de calcio de las reservas internas, etc.
Citoplasma
El citoplasma es la parte del protoplasma que, en una célula eucariota, se encuentra entre el núcleo celular y la membrana plasmática.1 2 Consiste en una emulsión coloidal muy fina de aspecto granuloso, el citosol o hialoplasma, y en una diversidad de orgánulos celulares que desempeñan diferentes funciones.Su función es albergar los orgánulos celulares y contribuir al movimiento de estos. El citosol es la sede de muchos de los procesos metabólicos que se dan en las células.
El citoplasma se divide en ocasiones en una región externa gelatinosa, cercana a la membrana, e implicada en el movimiento celular, que se denomina ectoplasma; y una parte interna más fluida que recibe el nombre de endoplasma y donde se encuentran la mayoría de los orgánulos.3 El citoplasma se encuentra en las células procariotas así como en las eucariotas y en él se encuentran varios nutrientes que lograron atravesar la membrana plasmática, llegando de esta forma a los orgánulos de la célula.
El citoplasma de las células eucariotas está subdividido por una red de membranas (retículo endoplasmático liso y retículo endoplasmático rugoso) que sirven como superficie de trabajo para muchas de sus actividades bioquímicas.
El retículo endoplasmático rugoso está presente en todas las células eucariotas (inexistente en las procariotas)4 y predomina en aquellas que fabrican grandes cantidades de proteínas para exportar. Es continuo con la membrana externa de la envoltura nuclear, que también tiene ribosomas adheridos.
Núcleo celular
En biología, el núcleo celular es un orgánulo membranoso que se encuentra en el centro de las células eucariotas. Contiene la mayor parte del material genético celular, organizado en múltiples moléculas lineales de ADN de gran longitud formando complejos con una gran variedad de proteínas como las histonas para formar los cromosomas. El conjunto de genes de esos cromosomas se denomina genoma nuclear. La función del núcleo es mantener la integridad de esos genes y controlar las actividades celulares regulando la expresión génica. Por ello se dice que el núcleo es el centro de control de la célula.La principal estructura que constituye el núcleo es la envoltura nuclear, una doble membrana que rodea completamente al orgánulo y separa ese contenido del citoplasma, además de contar con poros nucleares que permiten el paso a través de la membrana para la expresión genética y el mantenimiento cromosómico.
Aunque el interior del núcleo no contiene ningún subcompartimento membranoso, su contenido no es uniforme, existiendo una cierta cantidad de cuerpos subnucleares compuestos por tipos exclusivos de proteínas, moléculas de ARN y segmentos particulares de los cromosomas. El mejor conocido de todos ellos es el nucléolo, que principalmente está implicado en la síntesis de los ribosomas. Tras ser producidos en el nucléolo, éstos se exportan al citoplasma, donde traducen el ARNm.
Función
La principal
función del núcleo celular es controlar la expresión genética y mediar en la
replicación del ADN durante el ciclo celular.
El núcleo proporciona un emplazamiento para la transcripción en el citoplasma,
permitiendo niveles de regulación que no están
disponibles en procariotas. Tiene diferentes funciones:
- En el núcleo se guardan los genes en forma de cromosomas (durante la mitosis) o cromatina (durante la interfase)
- Organiza los genes en cromosomas lo que permite la división celular
- Transporta los factores de regulación a través de los poros nucleares
- Produce ácido nucleico mensajero (ARNm) que codifica proteínas.
- Produce pre-ribosomas (ARNr) en el nucléolo.
Ácido desoxirribonucleico
El ácido desoxirribonucleico, abreviado como ADN, es un ácido nucleico que contiene instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. El papel principal de la molécula de ADN es el almacenamiento a largo plazo de información. Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas de ARN. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética.Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C o guanina→G) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno.1
Para que la información que contiene el ADN pueda ser utilizada por la maquinaria celular, debe copiarse en primer lugar en unos trenes de nucleótidos, más cortos y con unas unidades diferentes, llamados ARN. Las moléculas de ARN se copian exactamente del ADN mediante un proceso denominado transcripción. Una vez procesadas en el núcleo celular, las moléculas de ARN pueden salir al citoplasma para su utilización posterior. La información contenida en el ARN se interpreta usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) para cada aminoácido. Esto es, la información genética (esencialmente: qué proteínas se van a producir en cada momento del ciclo de vida de una célula) se halla codificada en las secuencias de nucleótidos del ADN y debe traducirse para poder funcionar. Tal traducción se realiza usando el código genético a modo de diccionario. El diccionario "secuencia de nucleótido-secuencia de aminoácidos" permite el ensamblado de largas cadenas de aminoácidos (las proteínas) en el citoplasma de la célula. Por ejemplo, en el caso de la secuencia de ADN indicada antes (ATGCTAGATCGC...), la ARN polimerasa utilizaría como molde la cadena complementaria de dicha secuencia de ADN (que sería TAC-GAT-CTA-GCG-...) para transcribir una molécula de ARNm que se leería AUG-CUA-GAU-CGC-... ; el ARNm resultante, utilizando el código genético, se traduciría como la secuencia de aminoácidos metionina-leucina-ácido aspártico-arginina-...
Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominan genes. Cada gen contiene una parte que se transcribe a ARN y otra que se encarga de definir cuándo y dónde deben expresarse. La información contenida en los genes (genética) se emplea para generar ARN y proteínas, que son los componentes básicos de las células, los "ladrillos" que se utilizan para la construcción de los orgánulos u organelos celulares, entre otras funciones.
Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas que, durante el ciclo celular, se duplican antes de que la célula se divida. Los organismos eucariotas (por ejemplo, animales, plantas, y hongos) almacenan la mayor parte de su ADN dentro del núcleo celular y una mínima parte en elementos celulares llamados mitocondrias, y en los plastos y los centros organizadores de microtúbulos o centríolos, en caso de tenerlos; los organismos procariotas (bacterias y arqueas) lo almacenan en el citoplasma de la célula, y, por último, los virus ADN lo hacen en el interior de la cápsida de naturaleza proteica. Existen multitud de proteínas, como por ejemplo las histonas y los factores de transcripción, que se unen al ADN dotándolo de una estructura tridimensional determinada y regulando su expresión. Los factores de transcripción reconocen secuencias reguladoras del ADN y especifican la pauta de transcripción de los genes. El material genético completo de una dotación cromosómica se denomina genoma y, con pequeñas variaciones, es característico de cada especie.
Cromatina
La cromatina es el conjunto de ADN, histonas y proteínas no histónicas que se encuentran en el núcleo de las células eucariotas y que constituye el genoma de dichas células.Las unidades básicas de la cromatina son los nucleosomas. Estos se encuentran formados por aproximadamente 146 pares de bases de longitud (el número depende del organismo), asociados a un complejo específico de 8 histonas nucleosómicas (octámero de histonas). Cada partícula tiene una forma de disco, con un diámetro de 11 nm y contiene dos copias de cada una de las 4 histonas H3, H4, H2A y H2B. Este octámero forma un núcleo proteico, alrededor del cual se enrolla la hélice de ADN (de aproximadamente 1,8 vueltas). Entre cada una de las asociaciones de ADN e histonas existe un ADN libre llamado ADN espaciador, de longitud variable entre 0 y 80 pares de nucleótidos que garantiza flexibilidad a la fibra de cromatina. Este tipo de organización, permite un primer paso de compactación del material genético, y da lugar a una estructura parecida a un "collar de cuentas".
Posteriormente, un segundo nivel de organización de orden superior lo constituye la "fibra de 30nm", compuesta por grupos de nucleosomas empaquetados unos sobre otros adoptando disposiciones regulares gracias a la acción de la histona H1.
Finalmente, continúa el incremento del empaquetamiento del ADN hasta obtener los cromosomas que observamos en la metafase, el cual es el máximo nivel de condensación del ADN.
Ácido ribonucleico
El ácido ribonucleico (ARN o RNA) es un ácido nucleico formado por una cadena de ribonucleótidos. Está presente tanto en las células procariotas como en las eucariotas, y es el único material genético de ciertos virus (virus ARN). El ARN celular es lineal y de hebra sencilla, pero en el genoma de algunos virus es de doble hebra.En los organismos celulares desempeña diversas funciones. Es la molécula que dirige las etapas intermedias de la síntesis proteica; el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo). Varios tipos de ARN regulan la expresión génica, mientras que otros tienen actividad catalítica. El ARN es, pues, mucho más versátil que el ADN.
Fuente:Wikipedia, la enciclopedia libre es.wikipedia.org
No hay comentarios.:
Publicar un comentario